Measurement-induced macroscopic entanglement generation in a hot, strongly interacting atomic system

Jia Kong¹, Ricardo Jiménez-Martínez¹, Vito Giovanni Lucivero², Charikleia Troullinou¹, Géza Tóth³, and Morgan W. Mitchell¹,⁴

¹ ICFO–Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
² Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
³ Department of Theoretical Physics, University of the Basque Country UPV/EHU, P.O. Box 644, E-48080 Bilbao, Spain
⁴ ICREA – Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain

Abstract

We study non-local entanglement and macroscopic singlet state generation in a hot, strongly-interacting atomic system by using quantum non-demolition (QND) measurement, and particularly, the Bayesian estimation technique of Kalman filtering (KF) [1] to recover the spin information. By comparing the total spin variance against spin squeezing inequalities [2], we observe 1.9 dB spin squeezing, and at least 1.5×10^{13} atoms have entered singlet state with entanglement bonds extending thousands of times the nearest-neighbor distance. The results show that the hot, strongly-interacting media, now in use for extreme atomic sensing, together with QND and KF techniques can operate beyond the standard quantum limit (SQL).

We work with a vapor of 87Rb contained in a glass cell with buffer gas to slow diffusion, and housed in magnetic shielding and field coils to control the magnetic environment, see Fig. 1 a). The density is maintained at $n_{Rb} = 3.6 \times 10^{14}$ atoms/cm3, and the magnetic field, applied along the [1,1,1] direction, is used to control the Larmor precession frequency $\omega_L/2\pi$. At low ω_L, the vapor enters the SERF regime, characterized by a large increase in spin coherence time as shown in Fig. 1 b) with spin noise spectroscopy [3]. The KF provides both a best estimate and a covariance matrix for the state variable, which gives an upper bound on the variances of the post-measurement state. In particular, the total variation can be compared against spin squeezing inequalities to detect and quantify entanglement. Fig. 1 c) shows the total variance including a transition to squeezed/entangled states as the system enters the SERF regime.

![Figure 1: Experimental Principle. a) Experimental setup. b) Spin noise spectra with different bias field strengths. c) Spin variance $|\Delta F|^2$ versus Larmor frequency corresponding to the spectra in b). Black solid-line shows the standard quantum limit (SQL). Round, diamonds and squares symbols show $|\Delta F|^2$ measured with 0.5 mW, 1 mW and 2 mW probe light, respectively.](image)

References